Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
1.
Fluids Barriers CNS ; 21(1): 17, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383424

RESUMO

BACKGROUND: Interpretation of cerebrospinal fluid (CSF) studies can be challenging in preterm infants. We hypothesized that intraventricular hemorrhage (IVH), post-hemorrhagic hydrocephalus (PHH), and infection (meningitis) promote pro-inflammatory CSF conditions reflected in CSF parameters. METHODS: Biochemical and cytological profiles of lumbar CSF and peripheral blood samples were analyzed for 81 control, 29 IVH grade 1/2 (IVH1/2), 13 IVH grade 3/4 (IVH3/4), 15 PHH, 20 culture-confirmed bacterial meningitis (BM), and 27 viral meningitis (VM) infants at 36.5 ± 4 weeks estimated gestational age. RESULTS: PHH infants had higher (p < 0.02) CSF total cell and red blood cell (RBC) counts compared to control, IVH1/2, BM, and VM infants. No differences in white blood cell (WBC) count were found between IVH3/4, PHH, BM, and VM infants. CSF neutrophil counts increased (p ≤ 0.03) for all groups compared to controls except IVH1/2. CSF protein levels were higher (p ≤ 0.02) and CSF glucose levels were lower (p ≤ 0.003) for PHH infants compared to all other groups. In peripheral blood, PHH infants had higher (p ≤ 0.001) WBC counts and lower (p ≤ 0.03) hemoglobin and hematocrit than all groups except for IVH3/4. CONCLUSIONS: Similarities in CSF parameters may reflect common pathological processes in the inflammatory response and show the complexity associated with interpreting CSF profiles, especially in PHH and meningitis/ventriculitis.


Assuntos
Infecções do Sistema Nervoso Central , Hidrocefalia , Meningite , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Relevância Clínica , Hemorragia Cerebral/complicações , Hidrocefalia/líquido cefalorraquidiano , Infecções do Sistema Nervoso Central/complicações , Meningite/complicações , Líquido Cefalorraquidiano
2.
Neurochem Res ; 49(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337135

RESUMO

The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.


Assuntos
Hidrocefalia , Criança , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/patologia , Encéfalo/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Cabeça , Líquido Cefalorraquidiano
3.
Neurol Med Chir (Tokyo) ; 63(4): 141-151, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858632

RESUMO

Cerebrospinal fluid (CSF) production and absorption concept significantly changed in the early 2010s from "third circulation theory" and "classical bulk flow theory" to a whole new one as follows: First, CSF is mainly produced from interstitial fluid excreted from the brain parenchyma, and CSF produced from the choroid plexus plays an important role in maintaining brain homeostasis. Second, CSF is not absorbed in the venous sinus via the arachnoid granules, but mainly in the dural lymphatic vessels. Finally, the ventricles and subarachnoid spaces have several compensatory direct CSF pathways at the borders attached to the choroid plexus, e.g., the inferior choroidal point of the choroidal fissure, other than the foramina of Luschka and Magendie. In idiopathic normal pressure hydrocephalus (iNPH), the lateral ventricles and basal cistern are enlarged simultaneously due to the compensatory direct CSF pathways. The average total intracranial CSF volume increased from about 150 mL at 20 years to about 350 mL at 70 years due to the decrease in brain volume with aging and further increased above 400 mL in patients with iNPH. CSF movements are composed of a steady microflow produced by the rhythmic wavy movement of motile cilia on the ventricular surface and dynamic pulsatile flow produced by the brain and cerebral artery pulsation, respiration, and head movement. Pulsatile CSF movements might totally decrease with aging, but it in the ventricles might increase at the foramina of Magendie and Luschka dilation. Aging CSF dynamics are strongly associated with ventricular dilatation in iNPH.


Assuntos
Hidrocefalia , Humanos , Hidrocefalia/líquido cefalorraquidiano , Encéfalo , Plexo Corióideo , Ventrículos Laterais , Espaço Subaracnóideo , Líquido Cefalorraquidiano , Ventrículos Cerebrais
4.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
5.
Comput Methods Programs Biomed ; 231: 107209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796166

RESUMO

BACKGROUND: Shedding light on less-known aspects of intracranial fluid dynamics may be helpful to understand the hydrocephalus mechanism. The present study suggests a mathematical framework based on in vivo inputs to compare the dynamic interaction of pulsatile blood, brain, and cerebrospinal fluid (CSF) between the healthy subject and the hydrocephalus patient. METHOD: The input data for the mathematical formulations was pulsatile blood velocity, which was measured using cine PC-MRI. Tube law was used to transfer the created deformation by blood pulsation in the vessel circumference to the brain domain. The pulsatile deformation of brain tissue with respect to time was calculated and considered to be inlet velocity in the CSF domain. The governing equations in all three domains were continuity, Navier-Stokes, and concentration. We used Darcy law with defined permeability and diffusivity values to define the material properties in the brain. RESULTS: We validated the preciseness of the CSF velocity and pressure through the mathematical formulations with cine PC-MRI velocity, experimental ICP, and FSI simulated velocity and pressure. We used the analysis of dimensionless numbers including Reynolds, Womersley, Hartmann, and Peclet to evaluate the characteristics of the intracranial fluid flow. In the mid-systole phase of a cardiac cycle, CSF velocity had the maximum value and CSF pressure had the minimum value. The maximum and amplitude of CSF pressure, as well as CSF stroke volume, were calculated and compared between the healthy subject and the hydrocephalus patient. CONCLUSION: The present in vivo-based mathematical framework has the potential to gain insight into the less-known points in the physiological function of intracranial fluid dynamics and the hydrocephalus mechanism.


Assuntos
Encéfalo , Hidrodinâmica , Humanos , Encéfalo/fisiologia , Hidrocefalia/sangue , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/líquido cefalorraquidiano
6.
J Neuroimmunol ; 372: 577954, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075158

RESUMO

Blood -cerebrospinal fluid-barrier (BCB) disruption in tuberculous meningitis (TBM) may be mediated by inflammatory cytokines, and may determine clinico-radiological severity and outcome. We report BCB permeability in TBM and its relationship with inflammatory cytokines (TNF-α, IL-1ß and IL-6), clinical severity, MRI changes and outcome. 55 TBM patients with a median age of 26 years were included. Their clinical, cerebrospinal fluid (CSF) and MRI findings were noted. The severity of meningitis was graded into stages I to III. Cranial MRI was done, and the presence of exudates, granuloma, hydrocephalus and infarctions was noted. BCB permeability was assessed by a ratio of CSF albumin to serum albumin (Qalb). The concentration of TNF-α, IL-1ß and IL-6 in CSF were measured by cytokine bead array. The Qalb in the patients was more than the mean + 2.5 SD of controls. In TBM, Qalb correlated with TNF- α (r = 0.47; p = 0.01), CSF cells (r = 0.29; p = 0.02) and exudate on MRI (0.18 ± 0.009 Vs 0.13 ± 0.008; p = 0.04). There was however no association of Qalb with demographic variables, stage, tuberculoma, infarction and hydrocephalus. At 6 months, 11(20%) died, 10(18.2%) had poor and 34(61.8%) had a good recovery. BCB permeability in TBM correlated with TNF-α, CSF pleocytosis and exudates but not with severity of meningitis and outcome.


Assuntos
Hidrocefalia , Tuberculose Meníngea , Adulto , Citocinas/líquido cefalorraquidiano , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/complicações , Interleucina-6 , Imageamento por Ressonância Magnética , Permeabilidade , Albumina Sérica , Tuberculose Meníngea/diagnóstico por imagem , Fator de Necrose Tumoral alfa
7.
J Neurosurg Pediatr ; 30(2): 169-176, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916101

RESUMO

OBJECTIVE: Posthemorrhagic hydrocephalus (PHH) following preterm intraventricular hemorrhage (IVH) is among the most severe sequelae of extreme prematurity and a significant contributor to preterm morbidity and mortality. The authors have previously shown hemoglobin and ferritin to be elevated in the lumbar puncture cerebrospinal fluid (CSF) of neonates with PHH. Herein, they evaluated CSF from serial ventricular taps to determine whether neonates with PHH following severe initial ventriculomegaly had higher initial levels and prolonged clearance of CSF hemoglobin and hemoglobin degradation products compared to those in neonates with PHH following moderate initial ventriculomegaly. METHODS: In this observational cohort study, CSF samples were obtained from serial ventricular taps in premature neonates with severe IVH and subsequent PHH. CSF hemoglobin, ferritin, total iron, total bilirubin, and total protein were quantified using ELISA. Ventriculomegaly on cranial imaging was assessed using the frontal occipital horn ratio (FOHR) and was categorized as severe (FOHR > 0.6) or moderate (FOHR ≤ 0.6). RESULTS: Ventricular tap CSF hemoglobin (mean) and ferritin (initial and mean) were higher in neonates with severe versus moderate initial ventriculomegaly. CSF hemoglobin, ferritin, total iron, total bilirubin, and total protein decreased in a nonlinear fashion over the weeks following severe IVH. Significantly higher levels of CSF ferritin and total iron were observed in the early weeks following IVH in neonates with severe initial ventriculomegaly than in those with initial moderate ventriculomegaly. CONCLUSIONS: Among preterm neonates with PHH following severe IVH, elevated CSF hemoglobin, ferritin, and iron were associated with more severe early ventricular enlargement (FOHR > 0.6 vs ≤ 0.6 at first ventricular tap).


Assuntos
Hidrocefalia , Doenças do Prematuro , Bilirrubina , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Ferritinas , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/diagnóstico por imagem , Doenças do Prematuro/etiologia , Ferro
8.
Fluids Barriers CNS ; 19(1): 39, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658898

RESUMO

BACKGROUND: Congenital hydrocephalus occurs with some inheritable characteristics, but the mechanisms of its development remain poorly understood. Animal models provide the opportunity to identify potential genetic causes in this condition. The Hydrocephalus-Texas (H-Tx) rat strain is one of the most studied animal models for investigating the causative genetic alterations and analyzing downstream pathogenetic mechanisms of congenital hydrocephalus. METHODS: Comparative genomic hybridization (CGH) array on non-hydrocephalic and hydrocephalic H-Tx rats was used to identify causative genes of hydrocephalus. Targeted gene knockout mice were generated by CRISPR/Cas9 to study the role of this gene in hydrocephalus. RESULTS: CGH array revealed a copy number loss in chromosome 16p16 region in hydrocephalic H-Tx rats at 18 days gestation, encompassing the protein tyrosine phosphatase non-receptor type 20 (Ptpn20), a non-receptor tyrosine phosphatase, without change in most non-hydrocephalic H-Tx rats. Ptpn20-knockout (Ptpn20-/-) mice were generated and found to develop ventriculomegaly at 8 weeks. Furthermore, high expression of phosphorylated Na-K-Cl cotransporter 1 (pNKCC1) was identified in the choroid plexus (CP) epithelium of mice lacking Ptpn20 from 8 weeks until 72 weeks. CONCLUSIONS: This study determined the chromosomal location of the hydrocephalus-associated Ptpn20 gene in hydrocephalic H-Tx rats. The high level of pNKCC1 mediated by Ptpn20 deletion in CP epithelium may cause overproduction of cerebrospinal fluid and contribute to the formation of hydrocephalus in Ptpn20-/- mice. Ptpn20 may be a potential therapeutic target in the treatment of hydrocephalus.


Assuntos
Plexo Corióideo , Hidrocefalia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Plexo Corióideo/metabolismo , Hibridização Genômica Comparativa , Hidrocefalia/líquido cefalorraquidiano , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos , Membro 2 da Família 12 de Carreador de Soluto/genética , Texas
9.
World Neurosurg ; 161: 424-431, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505563

RESUMO

In this article, we aimed to describe some of the currently most challenging problems in neurosurgical management of hydrocephalus and how these can be reasons for inspiration for and development of research. We chose 4 areas of focus: 2 dedicated to improvement of current treatments (shunt implant surgery and endoscopic hydrocephalus surgery) and 2 dedicated to emerging future treatment principles (molecular mechanisms of cerebrospinal fluid secretion and hydrocephalus genetics).


Assuntos
Hidrocefalia , Derivações do Líquido Cefalorraquidiano/instrumentação , Endoscopia/métodos , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/cirurgia , Próteses e Implantes , Ventriculostomia/métodos
10.
J Anat ; 241(3): 820-830, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35638289

RESUMO

The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2 /M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.


Assuntos
Hidrocefalia , Órgão Subcomissural , Animais , Ventrículos Cerebrais/metabolismo , Glicoproteínas/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Células Neuroepiteliais
11.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379995

RESUMO

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Assuntos
Hidrocefalia , Animais , Fenômenos Biomecânicos , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Camundongos , Neurogênese/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma
12.
Neurosurg Rev ; 45(3): 1847-1859, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35015193

RESUMO

Hydrocephalus is a common complication of hemorrhagic stroke and has been reported to contribute to poor neurological outcomes. Herein, we aimed to investigate the validity of cerebrospinal fluid (CSF) data in predicting shunt-dependent hydrocephalus (SDHC) in patients with hemorrhagic stroke. PubMed, CENTRAL, and Embase databases were searched for relevant studies published through July 31, 2021. The 16 studies with 1505 patient included those in which CSF data predicted risk for SDHC and reports on CSF parameters in patients in whom SDHC or hydrocephalus that was not shunt-dependent developed following hemorrhagic stroke. We appraised the study quality using Newcastle-Ottawa Scale and conducted a meta-analysis of the pooled estimates of the CSF predictors. The meta-analysis revealed three significant CSF predictors for shunt dependency, i.e., higher protein levels (mean difference [MD] = 32.09 mg/dL, 95% confidence interval [CI] = 25.48-38.70, I2 = 0%), higher levels of transforming growth factor ß1 (TGF-ß1; MD = 0.52 ng/mL, 95% CI = 0.42-0.62, I2 = 0%), and higher ferritin levels (MD = 108.87 µg/dL, 95% CI = 56.68-161.16, I2 = 36%). The red blood cell count, lactate level, and glucose level in CSF were not significant in predicting SDHC in patients with hemorrhagic stroke. Therefore, higher protein, TGF-ß1, and ferritin levels in CSF are significant predictors for SDHC in patients with hemorrhagic stroke. Measuring these CSF parameters would help in the early recognition of SDHC risk in clinical care.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Hidrocefalia , Hemorragia Subaracnóidea , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Ferritinas , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Hemorragia Subaracnóidea/complicações , Fator de Crescimento Transformador beta1
13.
Arq. bras. neurocir ; 40(4): 408-411, 26/11/2021.
Artigo em Inglês | LILACS | ID: biblio-1362154

RESUMO

Background The ventriculoperitoneal shunt (VPS) procedure is still themost used technique for management of hydrocephalus. This article reports a case of hepatic cerebrospinal fluid (CSF) pseudocyst as a rare, but important, complication of the VPS insertion. Case Description An 18-year-old male presented to the hospital complaining of temporal headache and visual turbidity for approximately 3 months with a history of VPS insertion for treatment of hydrocephalus and revision of the valve in adolescence. The diagnosis was based on abdominal imaging, demonstrating an extra-axial hepatic CSF pseudocyst free from infection. Following the diagnosis, the management of the case consisted in the removal and repositioning of the catheter on the opposite site of the peritoneum. Conclusion The hepatic CSF pseudocyst is an infrequent complication of VPS procedure, but it needs to be considered when performing the first evaluation of the patient. Several techniques are considered efficient for the management of this condition, the choice must be made based on the variables of each individual case.


Assuntos
Humanos , Masculino , Adolescente , Derivação Ventriculoperitoneal/efeitos adversos , Cistos/líquido cefalorraquidiano , Infecções Relacionadas a Cateter/tratamento farmacológico , Hidrocefalia/complicações , Ceftriaxona/uso terapêutico , Vancomicina/uso terapêutico , Derivação Ventriculoperitoneal/métodos , Cistos/diagnóstico por imagem , Infecções Relacionadas a Cateter/diagnóstico por imagem , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/terapia
14.
Fluids Barriers CNS ; 18(1): 62, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952604

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus (PHH) have a complex pathophysiology involving inflammatory response, ventricular zone and cell-cell junction disruption, and choroid-plexus (ChP) hypersecretion. Increased cerebrospinal fluid (CSF) cytokines, extracellular matrix proteins, and blood metabolites have been noted in IVH/PHH, but osmolality and electrolyte disturbances have not been evaluated in human infants with these conditions. We hypothesized that CSF total protein, osmolality, electrolytes, and immune cells increase in PHH. METHODS: CSF samples were obtained from lumbar punctures of control infants and infants with IVH prior to the development of PHH and any neurosurgical intervention. Osmolality, total protein, and electrolytes were measured in 52 infants (18 controls, 10 low grade (LG) IVH, 13 high grade (HG) IVH, and 11 PHH). Serum electrolyte concentrations, and CSF and serum cell counts within 1-day of clinical sampling were obtained from clinical charts. Frontal occipital horn ratio (FOR) was measured for estimating the degree of ventriculomegaly. Dunn or Tukey's post-test ANOVA analysis were used for pair-wise comparisons. RESULTS: CSF osmolality, sodium, potassium, and chloride were elevated in PHH compared to control (p = 0.012 - < 0.0001), LGIVH (p = 0.023 - < 0.0001), and HGIVH (p = 0.015 - 0.0003), while magnesium and calcium levels were higher compared to control (p = 0.031) and LGIVH (p = 0.041). CSF total protein was higher in both HGIVH and PHH compared to control (p = 0.0009 and 0.0006 respectively) and LGIVH (p = 0.034 and 0.028 respectively). These differences were not reflected in serum electrolyte concentrations nor calculated osmolality across the groups. However, quantitatively, CSF sodium and chloride contributed 86% of CSF osmolality change between control and PHH; and CSF osmolality positively correlated with CSF sodium (r, p = 0.55,0.0015), potassium (r, p = 0.51,0.0041), chloride (r, p = 0.60,0.0004), but not total protein across the entire patient cohort. CSF total cells (p = 0.012), total nucleated cells (p = 0.0005), and percent monocyte (p = 0.016) were elevated in PHH compared to control. Serum white blood cell count increased in PHH compared to control (p = 0.042) but there were no differences in serum cell differential across groups. CSF total nucleated cells also positively correlated with CSF osmolality, sodium, potassium, and total protein (p = 0.025 - 0.0008) in the whole cohort. CONCLUSIONS: CSF osmolality increased in PHH, largely driven by electrolyte changes rather than protein levels. However, serum electrolytes levels were unchanged across groups. CSF osmolality and electrolyte changes were correlated with CSF total nucleated cells which were also increased in PHH, further suggesting PHH is a neuro-inflammatory condition.


Assuntos
Hemorragia Cerebral Intraventricular/líquido cefalorraquidiano , Líquido Cefalorraquidiano/química , Hidrocefalia/líquido cefalorraquidiano , Doenças do Prematuro/líquido cefalorraquidiano , Hemorragia Cerebral Intraventricular/complicações , Feminino , Humanos , Hidrocefalia/etiologia , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Retrospectivos
15.
Biomolecules ; 11(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439789

RESUMO

We investigated cerebrospinal fluid (CSF) expression of inflammatory cytokines and their relationship with spontaneous intracerebral and intraventricular hemorrhage (ICH, IVH) and perihematomal edema (PHE) volumes in patients with acute IVH. Twenty-eight adults with IVH requiring external ventricular drainage for obstructive hydrocephalus had cerebrospinal fluid (CSF) collected for up to 10 days and had levels of interleukin-1α (IL-1α), IL-1ß, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNFα), and C-C motif chemokine ligand CCL2 measured using enzyme-linked immunosorbent assay. Median [IQR] ICH and IVH volumes at baseline (T0) were 19.8 [5.8-48.8] and 14.3 [5.3-38] mL respectively. Mean levels of IL-1ß, IL-6, IL-10, TNF-α, and CCL2 peaked early compared to day 9-10 (p < 0.05) and decreased across subsequent time periods. Levels of IL-1ß, IL-6, IL-8, IL-10, and CCL2 had positive correlations with IVH volume at days 3-8 whereas positive correlations with ICH volume occurred earlier at day 1-2. Significant correlations were found with PHE volume for IL-6, IL-10 and CCL2 at day 1-2 and with relative PHE at days 7-8 or 9-10 for IL-1ß, IL-6, IL-8, and IL-10. Time trends of CSF cytokines support experimental data suggesting association of cerebral inflammatory responses with ICH/IVH severity. Pro-inflammatory markers are potential targets for injury reduction.


Assuntos
Hemorragia Cerebral Intraventricular/genética , Expressão Gênica , Hidrocefalia/genética , Adulto , Idoso , Hemorragia Cerebral Intraventricular/líquido cefalorraquidiano , Hemorragia Cerebral Intraventricular/fisiopatologia , Hemorragia Cerebral Intraventricular/terapia , Quimiocina CCL2/líquido cefalorraquidiano , Quimiocina CCL2/genética , Drenagem/métodos , Feminino , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/fisiopatologia , Hidrocefalia/terapia , Interleucina-10/líquido cefalorraquidiano , Interleucina-10/genética , Interleucina-1alfa/líquido cefalorraquidiano , Interleucina-1alfa/genética , Interleucina-1beta/líquido cefalorraquidiano , Interleucina-1beta/genética , Interleucina-6/líquido cefalorraquidiano , Interleucina-6/genética , Interleucina-8/líquido cefalorraquidiano , Interleucina-8/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/líquido cefalorraquidiano , Fator de Necrose Tumoral alfa/genética
16.
Cells ; 10(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34440681

RESUMO

Globally, approximately 11% of all infants are born preterm, prior to 37 weeks' gestation. In these high-risk neonates, encephalopathy of prematurity (EoP) is a major cause of both morbidity and mortality, especially for neonates who are born very preterm (<32 weeks gestation). EoP encompasses numerous types of preterm birth-related brain abnormalities and injuries, and can culminate in a diverse array of neurodevelopmental impairments. Of note, posthemorrhagic hydrocephalus of prematurity (PHHP) can be conceptualized as a severe manifestation of EoP. PHHP impacts the immature neonatal brain at a crucial timepoint during neurodevelopment, and can result in permanent, detrimental consequences to not only cerebrospinal fluid (CSF) dynamics, but also to white and gray matter development. In this review, the relevant literature related to the diverse mechanisms of cell death in the setting of PHHP will be thoroughly discussed. Loss of the epithelial cells of the choroid plexus, ependymal cells and their motile cilia, and cellular structures within the glymphatic system are of particular interest. Greater insights into the injuries, initiating targets, and downstream signaling pathways involved in excess cell death shed light on promising areas for therapeutic intervention. This will bolster current efforts to prevent, mitigate, and reverse the consequential brain remodeling that occurs as a result of hydrocephalus and other components of EoP.


Assuntos
Morte Celular , Hidrocefalia/patologia , Doenças do Prematuro/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Cílios/metabolismo , Epêndima/citologia , Epêndima/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Doenças do Prematuro/líquido cefalorraquidiano , Doenças do Prematuro/genética , Nascimento Prematuro , Transdução de Sinais
17.
J Cereb Blood Flow Metab ; 41(12): 3400-3414, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415213

RESUMO

The aetiology of congenital hydrocephalus (cHC) has yet to be resolved. cHC manifests late in rodent gestation, and by 18-22 weeks in human fetuses, coinciding with the start of the major phase of cerebral cortex development. Previously we found that cerebrospinal fluid (CSF) accumulation is associated with compositional changes, folate metabolic impairment and consequential arrest in cortical development. Here, we report a proteomics study on hydrocephalic and normal rat CSF using LC-MSMS and a metabolic pathway analysis to determine the major changes in metabolic and signalling pathways. Non-targeted analysis revealed a proteome transformation across embryonic days 17-20, with the largest changes between day 19 and 20. This provides evidence for a physiological shift in CSF composition and identifies some of the molecular mechanisms unleashed during the onset of cHC. Top molecular regulators that may control the shift in the CSF metabolic signature are also predicted, with potential key biomarkers proposed for early detection of these changes that might be used to develop targeted early therapies for this condition. This study confirms previous findings of a folate metabolic imbalance as well as providing more in depth metabolic analysis and understanding of cHC CSF.


Assuntos
Hidrocefalia/líquido cefalorraquidiano , Metaboloma , Proteoma/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/metabolismo , Humanos , Ratos , Ratos Sprague-Dawley
18.
J Neurosurg Pediatr ; 28(5): 533-543, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388710

RESUMO

OBJECTIVE: Postoperative hydrocephalus occurs in one-third of children after posterior fossa tumor resection. Although models to predict the need for CSF diversion after resection exist for preoperative variables, it is unknown which postoperative variables predict the need for CSF diversion. In this study, the authors sought to determine the clinical and radiographic predictors for CSF diversion in children following posterior fossa tumor resection. METHODS: This was a retrospective cohort study involving patients ≤ 18 years of age who underwent resection of a primary posterior fossa tumor between 2000 and 2018. The primary outcome was the need for CSF diversion 6 months after surgery. Candidate predictors for CSF diversion including age, race, sex, frontal occipital horn ratio (FOHR), tumor type, tumor volume and location, transependymal edema, papilledema, presence of postoperative intraventricular blood, and residual tumor were evaluated using a best subset selection method with logistic regression. RESULTS: Of the 63 included patients, 26 (41.3%) had CSF diversion at 6 months. Patients who required CSF diversion had a higher median FOHR (0.5 vs 0.4) and a higher percentage of postoperative intraventricular blood (30.8% vs 2.7%) compared with those who did not. A 0.1-unit increase in FOHR or intraventricular blood was associated with increased odds of CSF diversion (OR 2.9 [95% CI 1.3-7.8], p = 0.02 and OR 20.2 [95% CI 2.9-423.1], p = 0.01, respectively) with an overfitting-corrected concordance index of 0.68 (95% CI 0.56-0.80). CONCLUSIONS: The preoperative FOHR and postoperative intraventricular blood were significant predictors of the need for permanent CSF diversion within 6 months after posterior fossa tumor resection in children.


Assuntos
Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/diagnóstico , Neoplasias Infratentoriais/cirurgia , Criança , Pré-Escolar , Feminino , Humanos , Hidrocefalia/complicações , Neoplasias Infratentoriais/complicações , Ventrículos Laterais/irrigação sanguínea , Masculino , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos , Terceiro Ventrículo/irrigação sanguínea , Resultado do Tratamento
19.
J Neurosurg Pediatr ; 28(4): 458-468, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243147

RESUMO

OBJECTIVE: The study of brain size and growth has a long and contentious history, yet normal brain volume development has yet to be fully described. In particular, the normal brain growth and cerebrospinal fluid (CSF) accumulation relationship is critical to characterize because it is impacted in numerous conditions of early childhood in which brain growth and fluid accumulation are affected, such as infection, hemorrhage, hydrocephalus, and a broad range of congenital disorders. The authors of this study aim to describe normal brain volume growth, particularly in the setting of CSF accumulation. METHODS: The authors analyzed 1067 magnetic resonance imaging scans from 505 healthy pediatric subjects from birth to age 18 years to quantify component and regional brain volumes. The volume trajectories were compared between the sexes and hemispheres using smoothing spline ANOVA. Population growth curves were developed using generalized additive models for location, scale, and shape. RESULTS: Brain volume peaked at 10-12 years of age. Males exhibited larger age-adjusted total brain volumes than females, and body size normalization procedures did not eliminate this difference. The ratio of brain to CSF volume, however, revealed a universal age-dependent relationship independent of sex or body size. CONCLUSIONS: These findings enable the application of normative growth curves in managing a broad range of childhood diseases in which cognitive development, brain growth, and fluid accumulation are interrelated.


Assuntos
Encéfalo/crescimento & desenvolvimento , Líquido Cefalorraquidiano/fisiologia , Desenvolvimento Infantil , Adolescente , Algoritmos , Análise de Variância , Antropometria , Peso Corporal , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Lateralidade Funcional , Humanos , Hidrocefalia/líquido cefalorraquidiano , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , População , Padrões de Referência , Caracteres Sexuais
20.
Fluids Barriers CNS ; 18(1): 31, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233705

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) is an ultra-filtrated colorless brain fluid that circulates within brain spaces like the ventricular cavities, subarachnoid space, and the spine. Its continuous flow serves many primary functions, including nourishment, brain protection, and waste removal. MAIN BODY: The abnormal accumulation of CSF in brain cavities triggers severe hydrocephalus. Accumulating evidence had indicated that synchronized beats of motile cilia (cilia from multiciliated cells or the ependymal lining in brain ventricles) provide forceful pressure to generate and restrain CSF flow and maintain overall CSF circulation within brain spaces. In humans, the disorders caused by defective primary and/or motile cilia are generally referred to as ciliopathies. The key role of CSF circulation in brain development and its functioning has not been fully elucidated. CONCLUSIONS: In this review, we briefly discuss the underlying role of motile cilia in CSF circulation and hydrocephalus. We have reviewed cilia and ciliated cells in the brain and the existing evidence for the regulatory role of functional cilia in CSF circulation in the brain. We further discuss the findings obtained for defective cilia and their potential involvement in hydrocephalus. Furthermore, this review will reinforce the idea of motile cilia as master regulators of CSF movements, brain development, and neuronal diseases.


Assuntos
Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Cílios/fisiologia , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/fisiopatologia , Animais , Encéfalo/citologia , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...